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� Introduction

The traditional aim of this course is to teach you how to calculate amplitudes� cross

sections and decay rates� particularly for quantum electrodynamics� qed� but in principle
also for quantum chromodynamics� qcd� By the end of the course you should be able
to go from a Feynman diagram� such as the one for e�e� � ���� in Figure ����a�� to a
number for the cross section�

We will restrict ourselves to calculations at tree level but� at the end of the course�
we will also look qualitatively at higher order loop e�ects which� amongst other things�
are responsible for the running of the qcd coupling� This running means that the qcd
coupling appears weaker when measured at higher energy scales and is the reason why
we can sometimes do perturbative qcd calculations� As you might guess� the sort of
diagrams which are important here have closed loops of particle lines in them� in Fig

ure ����b� is one example contributing to the running of the qcd coupling �the curly
lines denote gluons��

In order to do our calculations we will need a certain amount of technology� In
particular� we will need to describe particles with spin� especially the spin
��� leptons
and quarks� We will therefore spend some time looking at the Dirac equation� After
this we�ll work out how to go from quantum mechanical probability amplitudes to cross
sections and decay rates� Then� with these tools in hand� we will look at some examples of
tree level qed processes� Here you will get hands
on experience of calculating transition
amplitudes and getting from them to cross sections� We then move on to qcd� This will
entail a brief introduction to renormalisation in both qed and qcd� We will introduce
the idea of the running coupling and look at asymptotic freedom in qcd�

In reference ��� you will �nd a list of textbooks which may be useful�

��� Units and Conventions

I will use natural units� c � �� �h � �� so mass� energy� inverse length and inverse time all
have the same dimensions�

	
vector a� � � �� �� �� � a� � �a�� a �
scalar product a�b � a�b� � a�b � g��a

�b�
�����

From the scalar product you see that the metric is

g � diag������������� g��g�� � ��� �
�

� if � � �
� if � �� �

�����

For c � �� g�� and g�� are numerically the same�

e�

e�

��

��

�

�a� �b�

Figure ��� Examples of Feynman diagrams contributing to �a� e�e� � ���� and �b� the

running of the strong coupling constant�



From the above� you would think it natural to write the space components of a ��vector as

ai for i � �� 	� 
� However� for 
�vectors I usually write the components as ai� This ought
not to cause confusion� since for 
�vectors the metric is just the unit matrix� Generally

speaking� a little care must be taken in getting the sign right for the ��� 	� 
� components

of a ��vector�

Note that �� is a covector�

�� �
�

�x�
� ��x

� � ���� �����

so ri � ��i and �� � �����r��
My convention for the totally antisymmetric Levi
Civita tensor is

����� �

��
�

�� if f�� �� �� 	g an even permutation of f�� �� �� �g
�� if an odd permutation
� otherwise

���	�

Note that ����� � ������� and �����p�q�r�s� changes sign under a parity transformation
�which is obvious because it contains an odd number of spatial components��

��� Relativistic Wave Equations

The starting point for this course is the Schr�odinger equation which can be written quite
generally as

H
 � i
�


�t
�����

where H is the Hamiltonian �i�e� the energy operator�� In this equation 
 is the wave

function describing the single particle probability amplitude� I shall usually reserve the
Greek symbol 
 for spin ��� fermions and � for spin � bosons� So for pions and the like
I shall write

H� � i
��

�t
� ���
�

In this course we want to extend the non
relativistic quantum mechanics� familiar to
undergraduates� into the relativistic domain� For example� in non
relativistic quantum
mechanics you are used to writing

H � T � V �����

where T is the kinetic energy and V is the potential energy� A particle of mass m and
momentum p has non
relativistic kinetic energy�

T �
P�

�m
�����

where capital P is the operator corresponding to momentum p� For a slow moving
particle v � c �e�g� an electron in a Hydrogen atom� this is adequate� but for relativistic
systems �v � c� the Hamiltonian above breaks down� For a free relativistic particle the
total energy E is given by the Einstein equation

E� � p� � m�� �����



Thus the square of the relativistic Hamiltonian H� is simply given by promoting the
momentum to operator status�

H� � P� � m�� ������

So far so good� but now the question arises of how to implement the Schr�odinger equation�
which is expressed in terms of H rather than H�� Naively the relativistic Schr�odinger
equation looks like p

P� � m�
�t� � i
�
�t�

�t
������

but this is di�cult to interpret because of the square root� There are two ways forward�

��� Work with H�� By iterating the Schr�odinger equation we have

H���t� � ��
���t�

�t�
� ������

This is known as the Klein
Gordon �KG� equation� In this case the wavefunction
describes spinless bosons�

��� Invent a new Hamiltonian HD which is linear in momentum� and whose square is
equal to H� given above� H�

D � P� � m�� In this case we have

HD
�t� � i
�
�t�

�t
������

which is known as the Dirac equation� with HD being the Dirac Hamiltonian� In
this case the wavefunction describes spin �
� fermions� as we shall see�

��� Wavefunctions and Fields

You may be wondering why I am talking about wavefunctions while in your �eld theory

course Dave Dunbar is telling you about �elds� Some of you may even be wondering
what is the di�erence between a wavefunction and a �eld�

The bottom line is that single particle wavefunctions work just �ne if you want
to describe systems where the particle number is conserved� Problems come when you
want to allow for relativistic e�ects� In particular antiparticles� and hence the possibility
that particles can annihilate or be pair produced� In fact� these new concepts can be
accommodated within the wavefunction approach� but in a way which is not really very
satisfactory� We�ll take a look at the problems encountered in trying to cling to the
wavefunction way of thinking shortly�

Rather than patch things up it�s much more appealing simply to ditch the usual
interpretation of 
 as a wavefunction and to identify it as a �eld� This �eld is then
subjected to the usual laws of quantum mechanics� This means elevating the �eld and
its canonical momentum to the status of operators which are then deemed to satisfy the
usual commutation relations� This is what Dave has been doing in his course� In the
limit that particle number is conserved� the theory is equivalent to the single particle
wavefunction approach�

It is important to emphasise that a �eld is very di�erent from a wavefunction� Think
�rst of a classical �eld� I �nd it easier to picture a �eld by �rst dividing space into
in�nitesimally small boxes� In each box is a �ctitious particle� and the amplitude of the



particle�s displacement from equilibrium is the value of the �eld as the point where the
small box is� If the �eld satis�es some wave equation then you can think of the motions
of the individual particles as being in�uenced by what�s going on in the neighbourhood
�e�g� consider a vibrating membrane�� the particles can be thought of as little harmonic
oscillators all coupled together� The �eld is de�ned in the limit of vanishingly small
boxes� and so describes a system with an in�nite number of degrees of freedom�

The Maxwell �eld of electromagnetism is a famous classical �eld� We can go ahead
an demand that it also be consistent with the laws of quantum mechanics� This means
we must quantise the motion of the in�nite number of little harmonic oscillators� To do
this� we simply impose the commutation relation �xi� pi� � i� where xi is the displacement
of the ith oscillator and pi is its momentum� Note that xi is simply the value of the �eld
at the point where the ith box is located� After doing this we have a theory which is
consistent with both relativity and quantum mechanics� Photons emerge as the quanta of
the electromagnetic �eld� and so the theory naturally describes systems with any number
of particles�

Maxwell�s wave equations are not the only equations we can write down which are
consistent with relativity� We can also write down the Klein
Gordon and Dirac equations
too �there are others� but these are the most relevant ones for particle physics�� Quantis

ing the corresponding �elds leads to quanta which have spin
� and spin
�
� respectively
�the Maxwell �eld leads to spin
� quanta�� Letting the spin
�
� quanta carry electric
charge means that they can interact with the spin
� quanta and the formalism has no
problem dealing with varying numbers of quanta� Of course� I�m skipping the details so
as to give you an overview� Dave Dunbar�s course aims to provide a fairly comprehensive
introduction to this whole area�

A �nal word of caution� Notation can be a little confusing� People often use the
same symbol for both the wavefunction and the �eld� You should always be aware of the
di�erence and be able to spot from the context which is meant�

��� The Klein�Gordon Equation

Let�s now take a more detailed look at the KG equation ������� In position space we
write the momentum operator as

p� �ir� ����	�

so that the KG equation becomes

��� m����x� � � ������

where we have introduced the box notation�

� � ���
� � ��
�t� �r� ����
�

and x is the 	
vector �t�x��
The operator � is Lorentz invariant� so the Klein
Gordon equation is relativistically

covariant �that is� transforms into an equation of the same form� if � is a scalar function�
That is to say� under a Lorentz transformation �t�x� � �t��x���

��t�x� � ���t��x�� � ��t�x�



so � is invariant� In particular � is then invariant under spatial rotations so it represents
a spin
zero particle �more on spin when we come to the Dirac equation� there being no
preferred direction which could carry information on a spin orientation�

The Klein
Gordon equation has plane wave solutions�

��x� � Ne�i�Et�p�x� ������

where N is a normalisation constant and E � �pp� � m�� Thus� there are both positive
and negative energy solutions� The negative energy solutions pose a severe problem if you
try to interpret � as a wavefunction �as indeed we are trying to do�� The spectrum is no
longer bounded from below� and you can extract arbitrarily large amounts of energy from
the system by driving it into ever more negative energy states� Any external perturbation
capable of pushing a particle across the energy gap of �m between the positive and
negative energy continuum of states can uncover this di�culty� Furthermore� we cannot
just throw away these solutions as unphysical since we need them in order to de�ne
a complete set of states� Note that if one interprets � as a quantum �eld there is no
problem� i�e� the positive and negative energy modes are just associated with operators
which create or destroy particles�

A second problem with the wavefunction interpretation arises when trying to �nd
a probability density� Since � is Lorentz invariant� j�j� doesn�t transform like a density�
To search for a candidate we derive a continuity equation� rather as you did for the
Schr�odinger equation in the pre
school problems� De�ning � and J by

� � i

�
��
��

�t
� �

���

�t

�

J � �i ���r�� �r���
������

you obtain �see problem� a covariant conservation equation

��J
� � � ������

where J is the 	
vector ���J�� It is natural to interpret � as a probability density and J
as a probability current� However� for a plane wave solution ������� � � �jN j�E� so � is
not positive de�nite since we�ve already found E can be negative�

�Exercise ���
Derive the continuity equation ������� Start with the Klein
Gordon equation multiplied
by �� and subtract the complex conjugate of the K
G equation multiplied by ��

Thus� � may well be considered as the density of a conserved quantity �such as
electric charge�� but we cannot use it for a probability density� To Dirac� this and the
existence of negative energy solutions seemed so overwhelming that he was led to intro

duce another equation� �rst order in time derivatives but still Lorentz covariant� hoping
that the similarity to Schr�odinger�s equation would allow a probability interpretation�
Dirac�s original hopes were unfounded because his new equation turned out to admit
negative energy solutions too! Even so� he did �nd the equation for spin
�
� particles
and predicted the existence of anti
particles�

Before turning to discuss what Dirac did� Let�s put things in context� We have found
that the Klein
Gordon equation� a candidate for describing the quantum mechanics of
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Figure ��	 Feynman interpretation of a process in which a negative energy electron is absorbed�

Time increases moving upwards�

spinless particles admits unacceptable negative energy states when � is interpreted as
the single particle wavefunction� We could solve all our problems here and now� and
restore our faith in the Klein
Gordon equation by simply re
interpreting � as a quantum
�eld� However we won�t do that� There is another way forward �this is the way followed
in the textbook of Halzen " Martin� due primarily to Feynman� Causality forces us to
ensure that positive energy states propagate forwards in time� Feynman spotted that
the negative energy states cause us problems only so long as we think of them as real
physical states propagating forwards in time� If we force these negative energy states
only to propagate backwards in time then we �nd a theory which is consistent with the
requirements of causality and which has none of the aforementioned problems�

According to Feynman� we should interpret the emission �absorption� of a negative
energy particle with momentum p� as the absorption �emission� of a positive energy
antiparticle with momentum �p�� So� in Figure ���� for example� an electron�positron
pair is created at point A� The positron propagates to point B where it is annihilated
by another electron� Another way of describing this picture is to say that the incoming
electron interacts to produce an outgoing photon and a negative energy electron� This
electron travels back in time where it scatters o� the incoming photon to produce the
outgoing electron� To someone observing in real time� the negative energy state moving
backwards in time looks to all intents and purposes like a positively charged electron
with positive energy moving forwards in time�



� The Dirac Equation

Dirac wanted an equation �rst order in time derivatives and Lorentz covariant� so it had
to be �rst order in spatial derivatives too� His starting point was to assume a Hamiltonian
of the form�

HD � ��P� � ��P� � ��P� � �m �����

where Pi are the three components of the momentum operator P� and �i and � are some
unknown quantities� which as will be seen below cannot simply be commuting numbers�
When the requirement that the H�

D � P� � m� is imposed� this implies that �i and �
must be interpreted as 		 	 matrices� as we shall discuss� The �rst step is to write the
momentum operators explicitly in terms of their di�erential operators� using equation
����	�� then the Dirac equation ������ becomes� using the Dirac Hamiltonian in equation
������

i
�


�t
� ��i��r� �m�
 �����

which is the position space Dirac equation� Remember that in �eld theory� the Dirac
equation is the equation of motion for the �eld operator describing spin ��� fermions� In
order for this equation to be Lorentz covariant� it will turn out that 
 cannot be a scalar
under Lorentz transformations� In fact this will be precisely how the equation turns out
to describe spin ��� particles� We will return to this below�

If 
 is to describe a free particle it is natural that it should satisfy the Klein

Gordon equation so that it has the correct energy
momentum relation� This requirement
imposes relationships among the � and �� To see these� apply the operator on each side
of equation ����� twice� i�e� iterate the equation�

��
�


�t�
� ���i�jrirj � i ���i � �i��mri � ��m��


with an implicit sum over i and j from � to �� The Klein
Gordon equation by comparison
is

��
�


�t�
� ��riri � m��
 �����

If we do not assume that the �i and � commute then the KG will clearly be satis�ed if

�i�j � �j�i � ��ij
��i � �i� � �

�� � �
���	�

for i� j � �� �� �� It is clear that the �i and � cannot be ordinary numbers� but it is possible
to give them a realisation as matrices� In this case� 
 must be a multi
component spinor
on which these matrices act�

�Exercise ���
Prove that any matrices � and � satisfying equation ���	� are traceless with eigenvalues
��� Hence argue that they must be even dimensional�

In two dimensions a natural set of matrices for the � would be the Pauli matrices

	� �
�

� �
� �

�
� 	� �

�
� �i
i �

�
� 	� �

�
� �
� ��

�
� �����



However� there is no other independent �	 � matrix with the right properties for �� so
the smallest dimension for which the Dirac matrices can be realised is four� One choice
is the Dirac representation�

� �
�

� �

� �

�
� � �

�
� �
� ��

�
� ���
�

Note that each entry above denotes a two
by
two block and that the � denotes the �	 �
identity matrix�

There is a theorem due to Pauli which states that all sets of matrices obeying the
relations in ���	� are equivalent� Since the Hermitian conjugates �y and �y clearly obey
the relations� you can� by a change of basis if necessary� assume that � and � are
Hermitian� All the common choices of basis have this property� Furthermore� we would
like �i and � to be Hermitian so that the Dirac Hamiltonian ������ is Hermitian�

�Exercise ���
Derive the continuity equation ��J

� � � for the Dirac equation with

� � J� � 
y
� J � 
y�
� �����

We will see in section ��
 that ���J� transforms� as it must� as a four
vector�

��� Free Particle Solutions I� Interpretation

We look for plane wave solutions of the form


 �
�
��p�
��p�

�
e�i�Et�p�x� �����

where ��p� and ��p� are two
component spinors which depend on momentum p but are
independent of x� Using the Dirac representation of the matrices� and inserting the trial
solution into the Dirac equation gives the pair of simultaneous equations

E
�
�
�

�
�
�

m ��p
��p �m

��
�
�

�
� �����

There are two simple cases for which equation ����� can readily be solved� namely

��� p � �� m �� � which might represent an electron in its rest frame�

��� m � �� p �� � which might represent a massless neutrino�

For case ���� an electron in its rest frame� the equations ����� decouple and become
simply�

E� � m�� E� � �m�� ������

So� in this case� we see that � corresponds to solutions with E � m� while � corresponds
to solutions with E � �m� In light of our earlier discussions� we no longer need to recoil
in horror at the appearance of these negative energy states�

The negative energy solutions persist for an electron with p �� � for which the
solutions to equation ����� are readily seen to be

� �
��p
E�m

�� � �
��p
E�m �� ������



Thus the general positive energy solutions with E � �jpp� � m�j are


�x� �
�

�
��p
E�m

�

�
e�i�Et�p�x�� ������

while the general negative energy solutions with E � �jpp� � m�j are


�x� �
� ��p

E�m
�

�

�
e�i�Et�p�x�� ������

for arbitrary constant � and �� Clearly when p � � these solutions reduce to the positive
and negative energy solutions discussed previously� As an aside� it is interesting to see
how Dirac coped with the negative energy states�

Dirac interpreted the negative energy solutions by postulating the existence of a
#sea$ of negative energy states� The vacuum or ground state has all the negative energy
states full� An additional electron must now occupy a positive energy state since the
Pauli exclusion principle forbids it from falling into one of the �lled negative energy
states� On promoting one of these negative energy states to a positive energy one� by
supplying energy� an electron
hole pair is created� i�e� a positive energy electron and a
hole in the negative energy sea� The hole is seen in nature as a positive energy positron�
This was a radical new idea� and brought pair creation and antiparticles into physics�
Positrons were discovered in cosmic rays by Carl Anderson in �����

The problem with Dirac�s hole theory is that it doesn�t work for bosons� Such
particles have no exclusion principle to stop them falling into the negative energy states�
releasing their energy�

Recall that Feynman tells us to keep both types of free particle solution� One is to
be used for particles and the other for the accompanying antiparticles� Let�s return to
our spinor solutions and introduce some basis spinors� Take the positive energy solution
of equation ������ and de�ne

p
E�m

�
�r

��p
E�m

�r

�
e�ip�x � ur�p�e�ip�x� ����	�

For the negative energy solution of equation ������� change the sign of the energy� E �
�E� and the three
momentum� p� �p� to obtain�

p
E�m

� ��p
E�m

�r
�r

�
eip�x � vr�p�eip�x� ������

In these two solutions E is now �and for the rest of the course� always positive and given
by E � �p� � m������ The subscript r takes the values �� �� with

�� �
�

�
�

�
� �� �

�
�
�

�
� ����
�

For the simple case p � � we may interpret �� as the spin
up state and �� as the
spin
down state� Thus for p � � the 	
component wavefunction has a very simple
interpretation� the �rst two components describe electrons with spin
up and spin
down�
while the second two components describe positrons with spin
up and spin
down� Thus
we understand on physical grounds why the wavefunction had to have four components�
The general case p �� � is slightly more involved and is considered in the next section�

The u
spinor solutions will correspond to particles and the v
spinor solutions to
antiparticles� The role of the two ��s will become clear in the following section� where it
will be shown that the two choices of r are spin labels� Note that each spinor solution
depends on the three
momentum p� so it is implicit that p� � E�



��� Free Particle Solutions II� Spin

Now it�s time to justify the statements we have been making that the Dirac equation
describes spin
��� particles� The Dirac Hamiltonian in momentum space is given in
equation ����� as

HD � ��P� �m ������

and the orbital angular momentum operator is

L � R	P�

Normally you have to worry about operator ordering ambiguities when going from classical

objects to quantum mechanical ones� For the components of L there is no ambiguity�

Evaluating the commutator of L with HD�

�L� HD� � �R	P���P�
� �R���P�	P
� i�	P�

������

we see that the orbital angular momentum is not conserved �otherwise the commutator
would be zero�� We�d like to �nd a total angular momentum J which is conserved� by
adding an additional operator S to L�

J � L � S� �J� HD� � �� ������

To this end� consider the three matrices�

	 �
�
� �
� �

�
� �i�������� ������

where the �rst equivalence is merely a de�nition of 	 and the last equality can read

ily be veri�ed� The 	
� have the correct commutation relations to represent angular
momentum� since the Pauli matrices do� and their commutators with � and � are�

�	� �� � �� �%i� �j� � �i�ijk�k� ������

�Exercise ���
Verify the commutation relations in equation �������

From the relations in ������ we �nd that

�	� HD� � ��i�	P�

Comparing this with the commutator of L with HD in equation ������� you readily see
that h

L � �
�
	� HD

i
� ��

and we can identify

S �
�

�
	



as the additional quantity which� when added to L in equation ������� yields a conserved
total angular momentum J� We interpret S as an angular momentum intrinsic to the
particle� Now

S� �
�

	

�
��� �

� ���
�

�
�

	

�
� �
� �

�
�

and recalling that the eigenvalue of J� for spin j is j�j���� we conclude that S represents
spin
��� and the solutions of the Dirac equation have spin
��� as promised�

We worked in the Dirac representation of the matrices for convenience� but the result
is necessarily independent of the representation�

Now consider the u
spinor solutions ur�p� of equation ����	�� Choose p � ��� �� pz�
and write

u� � u��p� �

	
BBB


p
E�m
�p
E�m
�

�
CCCA � u� � u��p� �

	
BBB


�p
E�m

�
�pE�m

�
CCCA � ������

It is easy to see that�

Szu� �
�

�
u�� Szu� � ��

�
u��

So� these two spinors represent spin up and spin down along the z
axis respectively� For
the v
spinors� with the same choice for p� write�

v� � v��p� �

	
BBB


p
E�m
�p
E�m
�

�
CCCA � v� � v��p� �

	
BBB


�
�pE�m

�p
E�m

�
CCCA � ������

where now�

Szv� �
�

�
v�� Szv� � ��

�
v��

This apparently perverse choice of up and down for the v�s is actually quite sensible when
one realises that a negative energy electron carrying spin ��
� backwards in time looks
just like a positive energy positron carrying spin ��
� forwards in time�

��� Normalisation and Gamma Matrices

We have included a normalisation factor
p
E�m in our spinors� With this factor�

ur�p�yus�p� � vr�p�yvs�p� � �E�rs� ����	�

This corresponds to the standard relativistic normalisation of �E particles per unit vol

ume �we shall justify this a bit later on�� It also means that uyu transforms like the time
component of a 	
vector under Lorentz transformations as we will see in section ��
�

�Exercise ���
Check the normalisation condition for the spinors in equation ����	��

There is a much more compact way of writing the Dirac equation� which requires
that we get to grips with some more notation� De�ne the gamma matrices�

�� � �� � � ��� ������



In the Dirac representation�

�� �
�

� �
� ��

�
� � �

�
� �

�� �

�
� ����
�

In terms of these� the relations between the � and � in equation ���	� can be written
compactly as�

f��� ��g � �g��� ������

Combinations like a��
� occur frequently and are conventionally written as�


a � a��
� � a����

pronounced #a slash�$ Note that �� is not� despite appearances� a 	
vector� It just
denotes a set of four matrices� However� the notation is deliberately suggestive� for when
combined with Dirac �elds you can construct quantities which transform like vectors and
other Lorentz tensors �see the next section��

Let�s close this section by observing that using the gamma matrices the Dirac equa

tion ����� becomes

�i
� �m�
 � �� ������

or in momentum space�
�
p �m�
 � �� ������

The spinors u and v satisfy
�
p �m�ur�p� � ��
�
p � m�vr�p� � ��

������

�Exercise ���
Derive the momentum space equations satis�ed by ur�p� and vr�p��

��� Lorentz Covariance

We want the Dirac equation ������ to preserve its form under Lorentz transformations
�LT�s�� Let &�

� represent a LT�

x� � x�� � &�
�x

� ������

A familiar example of a LT is a boost along the z�axis� for which


�
� �

	
BB


� � � ���
� � � �

� � � �

��� � � �

�
CCA �

with as usual � � v �in units of c� and � � �� � �������� LT�s can be thought of as

generalised rotations�

The requirement is

�i���� �m�
�x� � � �� �i����� �m�
��x�� � ��



where �� � &�
��

�
�� This last equality follows because

�� �
�

�x�
�
�x��

�x�
�

�x��
� &�

�
�

�x��

and equation ������ has been used in the last step�
We know that 	
vectors get their components mixed up by LT�s� so we expect that

the components of 
 might get mixed up too�


�x� � 
��x�� � S�&�
�x� � S�&�
�&��x�� ������

where S�&� is a 	 	 	 matrix acting on the spinor index of 
� Note that the argument
&��x� is just a fancy way of writing x� so each component of 
�x� is transformed into a
linear combination of components of 
�x��

It is helpful to recall that� for a vector �eld� the corresponding transformation is

A��x�� A���x��

where x� � 
x� This makes sense physically if one thinks of space rotations of a vector

�eld� For example the wind arrows on a weather map of England are an example of a

vector �eld� at each point on the map there is associated an arrow� Consider the wind
direction at a particular point on the map� say Abingdon� If the map of England is rotated�

then one would expect on physical grounds that the wind vector at Abingdon always point

in the same physical direction and have the same length� In order to achieve this� both

the vector itself must rotate� and the point to which it is attached �Abingdon� must be

correctly identi�ed after the rotation� Thus the vector at the point x� �corresponding to

Abingdon in the rotated frame� is equal to the vector at the point x �corresponding to

Abingdon in the unrotated frame�� but rotated so as to keep the physical sense of the

vector the same in the rotated frame �so that the wind always blows towards Oxford� say�

in the two frames�� Thus having correctly identi�ed the same point in the two frames all

we need to do is rotate the vector�

A���x�� � 
�
�A

��x��

A similar thing also happens in the case of the ��component spinor �eld above� except that

we do not �yet� know how the components of the wavefunction themselves must transform�

i�e� we do not know S�

We now need to �gure out what S is� To determine S we rewrite the Dirac equation
in terms of the primed variables �just a mathematical substitution��

�i��&�
��

�
� �m�
�&��x�� � �� ������

The key step is to realise that matrices� '� � ��&�
� satisfy the same anticommutation

relations as the ���s in equation ������� i�e�

f'��'�g � �g��� ����	�

�Exercise ��

Check relation ����	��



This is an important result� since it means that the ' matrices constitute an accept

able representation of the gamma matrices� Now any two equivalent representations of
the gamma matrices are related by a transformation�

'� � M���&���M�&�� ������

This allows us to rewrite equation ������ as

�i����� �m�M�&�
�&��x�� � ��

So we see that if S�&� � M�&� then it follows that

�i����� �m�
��x�� � �� ����
�

and the Dirac equation does indeed preserve its form in the primed frame�
We still haven�t solved for S explicitly �we have just shown that there is a solution��

To �nd S we need to solve equation ������� which may be written as�

��&�
� � S���&���S�&�� ������

For an in�nitesimal LT� it can be shown that�

&�
� � ��� � �ij�g

i��j� � gj��i�� ������

where �ij is an in�nitesimal parameter and the pair �i� j� label the six types of transfor

mation� i�e� � boosts and � rotations�

For example a boost along the z�axis corresponds to i � �� j � 
� since in this case�


�
� � ��� � ����g

����� � g������

�

	
BB


� � � ��
� � � �

� � � �

�� � � �

�
CCA �

which is the usual matrix for an in�nitesimal Lorentz boost� with � � ��� and � � ��

The combinations �i� j� � ��� �� and ��� 	� corresponds to boosts along the x and y axes
respectively� The remaining� combinations �	� 
�� �
� �� and ��� 	�� correspond to in�nites�

imal anti�clockwise rotations through an angle �ij about the x� y and z axes respectively�

It�s a nice exercise to check this out�

We are at liberty to write
S�&� � � � i�ijs

ij ������

and our task is to determine the set of matrices sij� To do this� substitute the expression
for S into equation ������ �and remember that S���&� � �� i�ijs

ij�� It is then not too
hard to show that the solution is

sij �
i

	
��i� �j� � �

�
	ij� ���	��

Here� I have taken the opportunity to de�ne the matrix 	ij� Thus S is given explicitly
in terms of gamma matrices for a general LT�



�Exercise ���
Verify that equation ������ relating ' and � is satis�ed by sij de�ned through equa

tions ������ and ���	��� The result

�A� �B�C�� � ffA�Bg� Cg � ffA�Cg� Bg
might prove useful�

We are aiming to �nd quantities which are Lorentz invariant� or transform as vectors
or tensors under LT�s� To this end� we�ll �nd it useful to introduce the Pauli and Dirac
adjoints� The Pauli adjoint 
 of a spinor 
 is de�ned by


 � 
y�� � 
y�� ���	��

The Dirac adjoint of a matrix A is de�ned by

�
A��� � �A
� ���	��

For Hermitian �� it is easy to show that

A � ��Ay ��� ���	��

Some properties of the Pauli and Dirac adjoints are

��A � �B� � ��A � ��B�
AB � BA�
A
 � 
A�

With these de�nitions� 
 transforms as follows under LT�s�


 � 
 � � 
S���&� ���		�

�Exercise ���

��� Verify that ��y � ������� This says that �� � ���

��� Using ������ and ���	�� verify that ��Sy�&��� � S���&�� i�e� S � S��� So S is not
unitary in general� although it is unitary for rotations �when i and j are spatial
indices�� This is because the rotations are in the unitary O��� subgroup of the
nonunitary Lorentz group� Here you show the result for an in�nitesimal LT� but it
is true for �nite LT�s�

��� Show that 
 satis�es the equation


 ��i
�


� �m� � �

where the arrow over 
� implies the derivative acts on 
�

�	� Hence prove that 
 transforms as in equation ���		��

Note that result ��� of the problem above can be rewritten as S�&� � S���&�� and
equation ������ for the similarity transformation of �� to '� takes the form�

S��S � &�
��

� � ���	��



Combining the transformation properties of 
 and 
 in equations ������ and ���		�
we see that the bilinear 

 is Lorentz invariant� In section ��
 we�ll consider the trans

formation properties of general bilinears�

Let me close this section by recasting the spinor normalisation equations ����	� in
terms of Dirac inner products� The conditions become

ur�p�us�p� � �m�rs

ur�p�vs�p� � vr�p�us�p� � �
vr�p�vs�p� � ��m�rs

���	
�

�Exercise ��

Verify the normalisation properties in the above equations ���	
��

��� Parity

In the next section we are going to construct quantities bilinear in 
 and 
� and classify
them according to their transformation properties under LT�s� We normally use LT�s
which are in the connected Lorentz Group� SO��� ��� meaning they can be obtained by
a continuous deformation of the identity transformation� Indeed in the last section we
considered LT�s very close to the identity in equation ������� However� the full Lorentz
group consists not only of the SO��� �� transformations but also includes the discrete
operations of parity �space inversion�� P � and time reversal� T �

&P �

	
BBB


� � � �
� �� � �
� � �� �
� � � ��

�
CCCA � &T �

	
BBB

�� � � �

� � � �
� � � �
� � � �

�
CCCA �

LT�s satisfy &Tg& � g �see the preschool problems�� so taking determinants shows
that det & � ��� LT�s in SO��� �� have determinant �� since the identity does� but the
P and T operations have determinant ���

Let�s now �nd the action of parity on the Dirac wavefunction and determine the
wavefunction 
P in the parity
reversed system� According to the discussion of the previ

ous section� and using the result of equation ���	��� we need to �nd a matrix S satisfying

S��S � ��� S�iS � ��i�

It�s not hard to see that S � S � �� is an acceptable solution� from which it follows that
the wavefunction 
P is


P �t�x� � ��
�t��x�� ���	��

In fact you could multiply �� by a phase and still have an acceptable de�nition for the
parity transformation�

In the non
relativistic limit� the wavefunction 
 approaches an eigenstate of parity�
Since

�� �
�

� �
� ��

�
�

the u
spinors and v
spinors at rest have opposite eigenvalues� corresponding to particle
and antiparticle having opposite intrinsic parities�



��	 Bilinear Covariants

Now� as promised� we will construct and classify the bilinears� You might like to ponder
why we are so interested in bilinears� i�e� objects which carry no spinor indices and
which involve only � spinor �elds �recall that the starting point of any �eld theory is
writing down a Lagrangian density�� To begin� note that by forming products of the
gamma matrices it is possible to construct �
 linearly independent 		 	 matrices� Any
constant 		 	 matrix can then be decomposed into a sum over these basis matrices� In
equation ���	�� we have de�ned

	�� � i

�
���� ����

and now it is convenient to de�ne

�� � �� � i�������� �
�

� �
� �

�
� ���	��

where the last equality is valid in the Dirac representation� This new matrix satis�es

�y� � ��� f��� ��g � ��

Now� the set of �
 matrices
f�� ��� ��� ����� 	��g

form a basis for gamma matrix products�

To see that there are �� matrices� there is � unit matrix� � �� matrix� � �� matrices and

� ���� matrices� and � 	�� matrices �see equation �	���� for the de�nition of 	���� Note

that 	�� is anti�symmetric to avoid double counting with the unit matrix� A little thought

is needed to convince yourself that any constant �� � matrix can be obtained from linear

combinations of these �� matrices�

Using the transformations of 
 and 
 from equations ������ and ���		�� together with
the similarity transformation of �� in equation ���	��� the �
 fermion bilinears and their
transformation properties can be written as follows�



 � 

 S scalar

��
 � det�&�
��
 P pseudoscalar

��
 � &�

�
�
�
 V vector


����
 � det�&� &�
�
�

���
 A axial vector

	��
 � &�

�&�
�
	

��
 T tensor

���	��

�Exercise ����
Verify the transformation properties of the bilinears in equation ���	���

Observe that 
��
 � ���J� is just the current we found earlier in equation ������



��
 Charge Conjugation

There is one more discrete invariance of the Dirac equation in addition to parity� It is
charge conjugation� which takes you from particle to antiparticle and vice versa� For
scalar �elds the symmetry is just complex conjugation� but in order for the charge conju

gate Dirac �eld to remain a solution of the Dirac equation� you have to mix its components
as well�


 � 
C � C
 T �

Here 
 T � ��T
� and C is a matrix satisfying the condition

C�T�C
�� � ����

In the Dirac representation�

C � i���� �
�

� �i	�
�i	� �

�
�

I refer you to textbooks such as ��� for details�
When Dirac wrote down his equation everybody thought parity and charge conju


gation were exact symmetries of nature� so invariance under these transformations was
essential� Now we know that neither of them� nor the combination CP � are respected by
the standard electroweak model�

��� Neutrinos

In the particle data book you will �nd only upper limits for the masses of the three
neutrinos� and in the standard model they are massless� Let�s look therefore at solutions
of the Dirac equation with m � �� From equation ����� we have in this case

E� � ��p�� E� � ��p�� ������

These equations can easily be decoupled by taking the linear combinations and de�ning
in a suggestive way the two component spinors �L and �R�

�R � � � �� �L � �� � ������

which leads to
E�R � ��p �R� E�L � ���p �L� ������

Since E � jpj for massless particles� these equations may be written

��p
jpj �L � ��L� ��p

jpj �R � �R ������

Now �
�
��p
jpj

is known as the helicity operator �i�e� it is the spin operator projected in the

direction of motion of the momentum of the particle� we see that the �L corresponds to
solutions with negative helicity� while �R corresponds to solutions with positive helicity�
In other words �L describes a left
handed neutrino while �R describes a right
handed
neutrino� and each type of neutrino is described by a two
component spinor�

The two
component spinors describing neutrinos transform very simply under LT�s�

�L � e
i
�
�����i���L ����	�



�R � e
i
�
�����i���R ������

where � � n� corresponds to space rotations through an angle � about the unit n
axis� and � � v� corresponds to Lorentz boosts along the unit vector v with a speed
v � tanh�� Note that these transformations are consistent with the fact that it is not
possible to boost past a massless particle �i�e� its helicity cannot be reversed��

However� under parity transformations they become transformed into each other�

�L 
 �R� ����
�

So a theory which involves only �L without �R �such as the standard model� manifestly
violates parity�

Although massless neutrinos can be described very simply using two component
spinors as above� they may also be incorporated into the four
component formalism as
follows� From equation ����� we have� in momentum space�

jpj
 � ��p
�

For such a solution�

��
 � ��
��p
jpj 
 � �

S�p
jpj 
�

using the spin operator S � �
�
	 � �

�
���� with 	 de�ned in equation ������� But S�p
jpj

is the projection of spin onto the direction of motion� i�e� the helicity� and is equal to
��
�� Thus ������
� projects out the neutrino with helicity �
� �right handed� and
������
� projects out the neutrino with helicity ��
� �left handed��

������

�

 � 
R�

������
�


 � 
L� ������

de�ne the four
component spinors 
R and 
L�
To date� only left handed neutrinos have been observed� and only left handed neu


trinos appear in the standard model� Since

��
�

�
������
 �

�

�
�������

�
�

any theory involving only left handed neutrinos necessarily violates parity �as we saw
before in the two
component formalism��

Finally note that in the Dirac representation which we have been using�

�� �
�

� �
� �

�
� ������

and the relation between the two
component and four
component formalisms is via the
change of variables in equation ������� However there exists a representation in which this
change of variables is done automatically and the �massless� Dirac equation falls apart
into the two two
component equations discussed above� In this chiral representation�

�� �
��� �

� �

�
� ������



and hence�
������

�

 �

�
�
�R

�
�

������
�


 �
�
�L
�

�
� ���
��

We have identi�ed �R and �L as the two
component spinors discussed previously� These
results are also applicable to the electron in the approximation that its mass is neglected�
by the simple transcription �R � eR� �L � eL� In fact in the standard model the
electrons start out massless� so these results will be of use to Tim Morris in his course�

The standard model �and the minimal supersymmetric standard model� contains only left

handed massless neutrinos� and neutrino mass terms are forbidden by gauge symmetry�

at least given the limited number of �elds present in the standard model� If extra �elds

�e�g� right handed neutrinos� are added then neutrino masses become possible� If neutrino

oscillations are con�rmed as the solution to the solar neutrino problem� or are discovered
in laboratory experiments� then such a modi�cation would become a necessity�



�a� �b�

Figure 
�� Scattering �a� and decay �b� processes�

� Cross Sections and Decay Rates

Dave Dunbar has already discussed how to compute scattering amplitudes in quantum
�eld theory �see Section 	 of his notes�� i�e� how to compute the matrix element

iMfi����	�	�Pf � Pi�
T�	

� hf  �T
�j (U��T
�� T
��j i  �T
�i� �����

where (U��T
�� T
�� is the operator which determines how the initial state i makes the
transition to the �nal state f � i�e�

(U��T
�� T
�� � T exp

�
�i

Z T��

�T��

(HI dt



� �����

As Dave has illustrated� it�s quite a lengthy procedure to derive particular scattering
amplitudes from �rst principles �i�e� expanding in a perturbation series� using Wicks
theorem etc��� Fortunately� there is a quicker way� which involves using Feynman rules�
Later on we�ll actually calculate some scattering amplitudes for qed� but only after Dave
has illustrated how to get at the Feynman rules�

For now let us assume that we�ve done the work and have computed Mfi� Our task
in this section is to convert this into a scattering cross section �relevant if there is more
than � particle in the initial state� or a decay rate �relevant if there is just � particle in
the initial state�� see Figure ����

The probability for the transition to occur is the square of the matrix element� i�e�

Probability � �iMfi����	�	�Pf � Pi��
�� �����

Attempting to take the squared modulus of the amplitude produces a meaningless square
of a delta function� This is a technical problem because our amplitude is expressed
between plane wave states� These states are states of de�nite momentum and so extend
throughout all of space
time� In a real experiment the incoming and outgoing states are
localised �e�g� they might leave tracks in a detector�� To deal with this properly you can
construct normalised wavepacket states which do become well separated in the far past
and the far future� We won�t deal with wavepackets� instead we�ll put our system in a
box of volume V � L�� We also imagine that the interaction is restricted to act only over
a time of order T � The �nal answers come out independent of V and T � reproducing the
ones we would get if we worked with localised wavepackets� We are in good company



here� Nobel Laureate Steven Weinberg says in his recent book� when discussing cross
sections and decay rates� #� � � �as far as I know� no interesting open problems in physics
hinge on getting the �ne points right regarding these matters�$

In in�nite spacetime with plane wave states the transition amplitude from i to f is
given by ������ However in our box of �nite size L and for our �nite time T the amplitude
is given by equation ����� but with the Dirac delta functions replaced by well behaved
functions�

����	�	�Pf � Pi� � I�Ef � Ei� T �I��Pf �Pi� L� ���	�

where for example�

I�Ef � Ei� T � �
�

�
Ef�Ei

�
�

sin

�
�Ef � Ei�T

�

�
� �����

This function has the property that� as T ���

I�Ef � Ei� T � � ����Ef � Ei� ���
�

and also
I��Ef � Ei� T � � ��T��Ef � Ei� �����

with analogous results for I�Pf � Pi� L�� Thus in our space
time box we have the ap

proximate result� �������	�	�Pf � Pi�

���� � V T ����	�	�Pf � Pi�� �����

Now� there is a further subtle point which needs to be addressed� If we have chosen
to normalise the �elds so as to correspond to �E particles per unit volume �as we did for
the spinor �elds earlier�� then we need to get rid of this factor by dividing the amplitude
squared by �EV per particle�

To see this note that the Dirac probability density� 
 � �y�� when integrated over the

volume of the box gives Z
box

uyu � 	EV

and we have used equation �	�	���

The transition rate� i�e� the probability per unit time� is thus

�

T
jMfij�V T ����	�	�Pf � Pi�

NY
f
�

�
�

�EfV

�Y
in

�
�

�EiV

�
� �����

����� The Number of Final States

For a single particle �nal state� the number of available states dn in some momentum
range k to k � dk is� in the box normalisation�

dn �
d�k

�����
V� ������

This result is proved by recalling that the allowed momenta in the box have components
which can only take on discrete values such as kx � ��nx
L where nx is an integer� Thus
dn � dnxdnydnz and the result follows�



For a two particle �nal state we have

dn � dn�dn�

where

dn� �
d�k�
�����

V� dn� �
d�k�
�����

V�

where dn is the number of �nal states in some momentum range k� to k��dk� for particle
� and k� to k� � dk� for particle �� There is an obvious generalisation to an N particle
�nal state�

dn �
NY
f
�

d�kf V

�����
� ������

����� Lorentz Invariant Phase Space �LIPS�

The transition rate for transitions into a particular element of �nal state phase space is
thus given by� using equations ������ and ������

dW � jMfij�����	�	�Pf � Pi�V
NY
f
�

�
�

�EfV

�Y
in

�
�

�EiV

� NY
f
�

d�kf V

�����
� ������

This can be re
written as

dW � jMfij�V
Y
in

�
�

�EiV

�
	 �LIPS� � ������

where the lips is�

LIPS � ����	�	�Pf � Pi�
NY
f
�

d�kf
����� �Ef

� ����	�

Observe that everything in the transition rate is Lorentz invariant save for the initial
energy factor and the factors of V �using d�k 
�E � d	k �	�k� � m����k��� which is
manifestly Lorentz invariant� where E � �k� � m������� For a one particle initial state
the factor of V cancels� and we can breath a sigh of relief �after all we would not expect
physical quantities to depend on the size of our arti�cial box�� For a two initial particle
scattering situation the factors of V will also cancel in the physical cross section as we
will show in the next section�

�Exercise ���
Show that the expression for two
body phase space in the centre of mass frame is given
by

d�k�
����� �E�

d�k�
����� �E�

����	�	�P � k� � k�� �
�

����s
�����s�m�

�� m
�
��d)�� ������

where s � P � is the centre of mass energy squared� d)� is the solid angle element for the
angle of one of the outgoing particles with respect to some �xed direction� and

��a� b� c� � a� � b� � c� � �ab� �bc� �ca� ����
�



��� Cross Sections

The total cross section for a static target and a beam of incoming particles is de�ned as
the total transition rate for a single target particle and a unit beam �ux� The di�erential
cross section is similarly related to the di�erential transition rate� We have calculated
the di�erential transition rate with a choice of normalisation corresponding to a single
#target$ particle in the box� and a #beam$ corresponding also to one particle in the box�
A beam consisting of one particle per volume V with a velocity v has a �ux N� given by

N� �
v

V

particles per unit area per unit time� Thus the di�erential cross section is related to the
di�erential transition rate in equation ������ by

d	 �
dW

N�
� dW 	 V

v
������

where as promised the factors of V cancel in the cross section�
Now let us generalise to the case where in the frame where you make the measure


ments� The #beam$ has a velocity v� but the #target$ particles are also moving with a
velocity v�� In a colliding beam experiment for example v� and v� will point in opposite
directions in the laboratory� In this case the de�nition of the cross section is retained as
above� but now the beam �ux of particles N� is e�ectively increased by the fact that the
target particles are moving towards it� The e�ective �ux in the laboratory in this case is
given by

N� �
j�v� � �v�j

V
which is just the total number of particles per unit area which run past each other per
unit time� I denote the velocities with arrows to remind you that they are vector velocities
which must be added using the vector law of velocity addition not the relativistic law�
In the general case� then� the di�erential cross section is given by

d	 �
dW

N�
�

�

j�v� � �v�j
�

	E�E�
jMfij� 	 LIPS ������

where we have used equation ������ for the transition rate� and the box volume V has
again cancelled�� The amplitude
squared and phase space factors are manifestly Lorentz
invariant� What about the initial velocity and energy factors� Observe that

E�E���v� � �v�� � E�p� � E�p��

In a frame where p� and p� are collinear�

jE�p� � E�p�j� � �p��p��� �m�
�m

�
��

and the last expression is manifestly Lorentz invariant� Hence we can de�ne a Lorentz
invariant di�erential cross section� The total cross section is obtained by integrating over
the �nal state phase space�

	 �
�

j�v� � �v�j
�

	E�E�

XZ
�nal states

jMfij� 	 LIPS� ������

�Because the result is independent of the dimensions of the box� you can think of making the box as
large as you like� i�e� big enough to �t your experiment inside� This means that there is no reason to
worry about the box�



pa

pb

pc

pd

Figure 
�	 	� 	 scattering�

A slight word of caution is needed in deciding on the limits of integration to get the total
cross section� If there are identical particles in the �nal state then the phase space should
be integrated so as not to double count�

����� Two�body Scattering

An important special case is � � � scattering �see Figure �����

a�pa� � b�pb� � c�pc� � d�pd��

�Exercise ���
Show that in the centre of mass frame the di�erential cross section is�

d	

d)�
�

�����s�m�
c� m

�
d�


	��s �����s�m�
a� m

�
b�
jMfij�� ������

Invariant � � � scattering amplitudes are frequently expressed in terms of the
Mandelstam variables� de�ned by

s � �pa � pb�
� � �pc � pd�

��

t � �pa � pc�
� � �pb � pd�

��

u � �pa � pd�
� � �pb � pc�

��

������

In fact there are only two independent Lorentz invariant combinations of the available
momenta in this case� so there must be some relation between s� t and u�

�Exercise ���
Show that

s � t � u � m�
a � m�

b � m�
c � m�

d�

�Exercise ���
Show that� for two body scattering of particles of equal mass m�

s 
 	m�� t � �� u � ��

��� Decay Rates

With one particle in the initial state the total transition rate is

W �
�

�E

XZ
�nal states

jMfij� 	 LIPS�



Only the factor �
�E is not manifestly Lorentz invariant� In the rest frame of a particle
of mass m we have

' � �

�m

XZ
�nal states

jMfij� 	 LIPS� ������

This is the de�nition of the #decay rate�$ In an arbitrary frame we �nd� W � �m
E�'�
which has the expected Lorentz dilation factor� In the master formula �equation �������
this is what the product of �
�Ei factors for the initial particles does�

Actually although the result ������ is correct our derivation is not quite right� To get
the answer� we needed to consider an initial state at sometime in the distant past� but
this state is unstable so it would have decayed before the interaction! I refer to Peskin
" Schroeder for a nice discussion of this subtlety�



� Quantum Electrodynamics

��� Quantising the Dirac Field

Dirac Field Theory is de�ned to be the theory whose �eld equations correspond to the
Dirac equation� We regard the two Dirac �elds 
�x� and 
�x� as being dynamically
independent �elds and postulate the Dirac Lagrangian density�

L � 
�x��i���� �m�
�x�� �	���

It�s easy to show that the Euler
Lagrange equation

�

�x�
�L

����
�
� �L
�


� � �	���

leads to the Dirac equation�
The canonical momentum is

��x� �
�L

� *
�x�
� i
y�x� �	���

and the Hamiltonian density is

H � � *
 � L � 
yi
�


�t
� �	�	�

Rather than interpret 
 as a wavefunction �and thereby have to keep in mind notions
of negative energy states moving backwards in time�� we shall follow Dave Dunbar� and
regard 
 as a quantum �eld� We need to quantise this �eld� Now� naively we would try
to impose the usual equal time commutation relations� i�e�

�
i�x� t�� �j�y� t�� � i�ij�
��x� y�� �	���

�
i�x� t�� 
j�y� t�� � �� �	�
�

��i�x� t�� �j�y� t�� � �� �	���

where i and j label the spinor components of 
 and �� This is a recipe for disaster� In
particular� there is no ground state� i�e� excitations of the vacuum can have negative
energies� The only way to cure the problem is to impose anti
commutation relations�

f
i�x� t�� �j�y� t�g � i�ij�
��x� y�� �	���

f
i�x� t�� 
j�y� t�g � �� �	���

f�i�x� t�� �j�y� t�g � �� �	����

There is a very nice discussion in Peskin " Schroeder on this �Chapter ��� In particular�
they show how anti
commutation relations really are the only solution�

As in Dave�s course� the Heisenberg equations of motion for the �eld operators have
solution


�x� t� �
Z d�k

�����
�

�E

X
�
���

�b��k�u��k�e�ik�x � dy��k�v��k�eik�x� �	����




�x� t� �
Z d�k

�����
�

�E

X
�
���

�by��k�u��k�eik�x � d��k�v��k�e�ik�x� �	����

and the anti
commutation relations imply thatn
b��k�� by���k��

o
� ����� �E ���k� k������ � �	����

n
d��k�� dy���k��

o
� ����� �E ���k� k������ � �	��	�

fb��k�� b���k��g � �� �	����n
by��k�� by���k��

o
� �� �	��
�

fd��k�� d���k��g � �� �	����n
dy��k�� dy���k��

o
� �� �	����

The total Hamiltonian is
H � N

Z
d�xH �	����

The pre�x N denotes normal ordering� This is the way we remove the ambiguity asso

ciated with the order of operators� Normal ordering means we are to put all creation
operators to the left of all the annihilation operators� If this means moving an anticom

muting �fermion� operator through another such operator then we need to remember to
pick up a minus sign�

After a bit of algebra we can get

H �
Z d�k

�����
�

�E
E

X
�
���

�by��k�b��k� � dy��k�d��k��� �	����

If we had tried to impose commutation relations� the ddy term would have entered
with a minus sign in front� which would signal that something has gone wrong� In
particular� it would mean that dy creates particles of negative energy� This is not supposed
to happen in the quantised �eld theory� Note that we could not �x the problem by simply
re
labelling d 
 dy since that would not be consistent with the commutations relations
imposed on 
 and ��

So� in order to quantise the Dirac �eld we are necessarily led to the introduction of
anti
commutation relations� Remarkably we �nd that we have automatically taken into
account the Pauli inclusion principle! For example�n

by��k�� by���k��
o

� �

implies that it�s not possible to create two quanta in the same state� i�e�

by��k�by��k�j�i � ��

This intimate connection between spin and statistics is a direct consequence of desiring
our theory to be consistent with the laws of relativity and quantum mechanics�

The charge operator is

Q � N
Z
d�x j��x� �

Z
d�x 
y




which� in terms of the creation and annihilation operators� is

Q �
Z d�k

�����
�

�E
E

X
�
���

�by��k�b��k�� dy��k�d��k�� �	����

which shows that by creates fermions while dy creates the associated anti
fermions of
opposite charge�

Using the techniques discussed in Dave�s �eld theory course� we can go ahead and
compute the propagator for a Dirac particle�

SF �x� y� � h�j
�x�
�y�j�i x� � y��

� �h�j
�y�
�x�j�i x� � y�� �	����

Skipping details �see section 	 of Dave Dunbar�s course�� this is

SF �x� y� �
Z d	p

����	
i�
p � m�

p� �m� � i�
e�ip��x�y�� �	����

��� Quantising the Electromagnetic Field

Dave showed us how to derive the Maxwell equations from the Lagrangian density

L � ��

	
F ��F�� � j�A

� �	��	�

where the �eld strength tensor is

F�� � ��A� � ��A�� �	����

�See the pre
school problems for an introduction to this way of formulating classical
electrodynamics�� He also highlighted the gauge invariance� i�e� that Maxwell�s equations
don�t change under the transformation

A��x� � A��x� � ��&�x� �	��
�

where &�x� is some scalar �eld� This gauge invariance allows us to impose the Lorentz
gauge condition� i�e� without loss of generality we can �x

��A
� � �� �	����

Note that� even after �xing the Lorentz gauge� we can perform another gauge transfor

mation on A�� i�e� A��x� � A��x� � ����x� where ��x� must satisfy the wave equation�
���

�� � ��
Immediately we try to quantise the electromagnetic �eld we hit a problem� To see

this note that the canonically conjugate �eld to A� is

+� �
�L

����A��
� F �� �	����

and from this it follows that +� � �� This means we have no possibility to impose a
non
zero commutation relation between +� and A�� which we would need if we are to
quantise the �eld�



Fortunately� all is not lost� Let us incorporate the gauge condition into the La

grangian density� i�e� write

L � ��

	
F ��F�� � j�A

� � �

��
���A

���� �	����

The new term �xes the gauge and � is a dimensionless Lagrange multiplier �as such it
can take on any value we choose�� At �rst sight it doesn�t look like we�ve done anything
useful since +� � F �� � ��
��g�����A

�� and so +� � �� This is certainly true classically
however� we need to be a bit more careful with the quantum theory� How are we supposed
to interpret the Lorentz gauge condition� If we assume it means that the operator ��A

�

vanishes then we can�t quantise� However� this is too restrictive� We need only ensure
that the gauge condition holds for matrix elements of ��A

� and now we can impose
non
zero commutation relations� The quantisation condition then leads to

�A��x� t�� ��A
��y� t�� � �ig�����x� y� �	����

with all other commutators vanishing� The Heisenberg operator corresponding to the
photon �eld is �putting � � ���

A��x� �
Z d�k

�����
�

�E

�X
�
�

h
����k�a��k�e�ik�x � ����k��a��k�yeik�x

i
�	����

where ��� are a set of four linearly independent basis vectors �� � �� �� �� ��� For example
we might choose �� � ��� �� �� ��� �� � ��� �� �� ��� �� � ��� �� �� �� and �� � ��� �� �� ��� If
k is along the z
axis then �� and �� are polarisation vectors for transverse polarisations
whilst �� is referred to as the timelike polarisation vector and �� is referred to as the
longitudinal polarisation vector�

The commutation relation �	���� implies thath
a��k�� ay���k��

i
� �g��� �E ��������k� k��� �	����

At a glance this looks �ne� i�e� we interpret ay��k� as an operator which creates quanta
of the electromagnetic �eld �photons� with polarisation � and momentum k� However�
for � � � we have a problem since the sign on the RHS of �	���� is opposite to that of
the other � polarisations� This shows up in the fact that these timelike photons make a
negative contribution to the energy�

H �
Z d�k

�����
�

�E
E
�
ay�a� � ay�a� � ay�a� � ay�a�

�
� �	����

Fortunately� although we might not realize it yet� we have already solved the problem!
The Lorentz gauge condition implies that� for all physical observables� the contributions
from the timelike and longitudinal photons always cancels� More explicitly� by demanding
that

h
j��A�j
i � � �	��	�

it follows that
h
jay�a� � ay�a�j
i � �� �	����

This is nice because it is in accord with our knowledge that free photons are transversely
polarised�

�This is often referred to as the Feynman gauge�



Here is a nice proof that the classical electromagnetic �eld is polarised transversely� The

classical �eld can be expanded thus

A��x� �

Z
d�k

�	���
�

	E

h
a��k�e

�ik�x � a��k�
�eik�x

i
���
��

and I have absorbed the sum over polarisation vectors into the Fourier coe�cients� a��

The Lorentz gauge condition says that k � a � �� i�e� a��k� � �k � a�k� and hence that
the time component of a� equals the longitudinal component� So we are already down

to 
 independent components� The next step comes on realizing that we have still the

residual freedom to shift A� � A�� 
�� for any � that satis�es the wave equation� Since

� satis�es the wave equation� we can perform a mode expansion just like we did for the

A� �eld� Thus we are free to perform the replacement a� � a���k�� For k� � �k� �� �� k�
and a� � �a�� a�� a�� a�� the choice � � �a��k transforms a� � ��� a�� a�� �� and we have

�nished�

Having convinced ourselves that we can go ahead and quantise the Maxwell �eld� we
can now proceed to look for the photon propagator� Again I�m going to skip the details
and refer back to Dave Dunbar�s course�

iD��
F �x� y� � h�jT�A��x�A��y��j�i

� �ig��
Z d	k

����	
e�ik��x�y�

k� � i�
� �	����

This is the Feynman propagator �� � ��� Generalising away from � � � is a bit more
tricky� it gives

iD��
F �x� y� � �i

Z d	k

����	
e�ik��x�y�

k� � i�

�
g�� � �� � ��

k�k�

k�

�
� �	����

��� Feynman Rules of QED

We are now ready to let our fermions and photons interact with each other� The inter

action is described by the Lagrangian

Lint � �e 
��A�
� �	����

Such an interaction may be introduced by the concept of #minimal substitution$ familiar
from classical electrodynamics�

p� p� eA�

E � E � e��

In four vector notation�
p� � p� � eA��

Applying this classical concept of minimal substitution to the Dirac equation gives

�i 
D �m�
 � � �	�	��

where we have introduced the covariant derivative

D� � �� � ieA��



The qed Lagrangian describing electrons� photons and their interactions is then given
by

L � ��

	
F��F

�� � �

�
���A

��� � 
�i 
D �m�
� �	�	��

where ���A��
� is the gauge �xing term for the Feynman gauge�
The qed Lagrangian is invariant under a symmetry called gauge symmetry� which

consists of the simultaneous gauge transformations of the photon �eld�

A� � A� � ��& �	�	��

and a phase transformation on the electron �eld�


 � e�ie�
� �	�	��

I refer to Dave Dunbar�s course for more details on gauge symmetries�
For us� the important thing is that we have got our hands on the qed Lagrangian

density� From it we can �gure out the Feynman rules� We have already written down the
fermion and photon propagators and can more or less write down the other Feynman rules
without further ado �I refer back to Dave Dunbar�s course� Section 	� for the detailed
discussion of how to get Feynman rules from the Lagrangian density�� The Feynman
rules for qed are summarised in Table 	���

The rule for the vertex can be obtained directly from Lint� The external line factors
are easily derived by considering simple matrix elements in the operator formalism� They

For every � � � draw � � � write � � �

Internal photon line
� � �ig��

q� � i�

Internal fermion line
	 �

p�
i�
p � m��	
p� �m� � i�

Vertex

	 �

�
�ie���	

Outgoing electron us�p�

Incoming electron us�p�

Outgoing positron vs�p�

Incoming positron vs�p�

Outgoing photon ���

Incoming photon ��

� Attach a directed momentum to every internal line

� Conserve momentum at every vertex

Table ��� Feynman rules for qed� �� � are Lorentz indices and �� � are spinor indices�
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Figure ��� Lowest order Feynman diagram for electron�muon scattering�

are what is left behind from the expansions of �elds in terms of annihilation and creation
operators� after the operators have all been �anti
�commuted until they annihilate the
vacuum�

The spinor indices in the Feynman rules are such that matrix multiplication is per

formed in the opposite order to that de�ning the �ow of fermion number� The arrow on
the fermion line itself denotes the fermion number �ow� not the direction of the momen

tum associated with the line� I will try always to indicate the momentum �ow separately
as in Table 	��� This will become clear in the examples which follow� We have already
met the Dirac spinors u and v� I will say more about the photon polarisation vector �
when we need to use it�

��� Electron�Muon Scattering

To lowest order in the electromagnetic coupling� just one diagram contributes to this
process� It is shown in Figure 	��� The amplitude obtained by applying the Feynman
rules to this diagram is

iMfi � ��ie� u�pc��
�u�pa�

��ig��
q�

�
��ie� u�pd��

�u�pb�� �	�		�

Note that� for clarity� I have dropped the spin label on the spinors� I�ll restore it when
I need to� In constructing this amplitude we have followed the fermion lines backwards
with respect to fermion �ow when working out the order of matrix multiplication �which
makes sense if you think of an unbarred spinor as a column vector and a barred spinor
as a row vector and remember that the amplitude carries no spinor indices��

The cross section involves the squared modulus of the amplitude� which is

jMfij� �
e	

q	
L��
�e�L��� �� �

where the subscripts e and � refer to the electron and muon respectively and

L��
�e� � u�pc��

�u�pa�u�pa��
�u�pc��

with a similar expression for L��
����

�Exercise ���
Verify the expression for jMfij��

Usually we have an unpolarised beam and target and do not measure the polarisation
of the outgoing particles� Thus we calculate the squared amplitudes for each possible
spin combination� then average over initial spin states and sum over �nal spin states�



Note that we square and then sum since the di�erent spin con�gurations are in principle
distinguishable� In contrast� if several Feynman diagrams contribute to the same process�
you have to sum the amplitudes �rst� We will see examples of this below�

The spin sums are made easy by the following results �I temporarily restore spin
labels on spinors�� X

r

ur�p� ur�p� � 
p � m�

X
r

vr�p� vr�p� � 
p �m�
�	�	��

Don�t forget that by m I really mean m times the unit 		 	 matrix�

�Exercise ���
Derive the spin sum relations in equation �	�	���

Using the spin sums we �nd that

�

	

X
spins

jMfij� �
e	

	q	

h
��ij�
pa�me�jk�

�
kl�
pc�me�li

ih
���ab�
pb�m��bc���cd�
pd�m��da

i

�
e	

	q	
tr
�
���
pa�me��

��
pc�me�
�

tr
�
���
pb�m�����
pd�m��

�
� �	�	
�

Where in the �rst expression� I chose to make explicit the spinor indices in order that
you can see how the trace which appears in the second expression emerges� Since all
calculations of cross sections or decay rates in qed require the evaluation of traces of
products of gamma matrices� you will generally �nd a table of #trace theorems$ in any
quantum �eld theory textbook ���� All these theorems can be derived from the fundamen

tal anticommutation relations of the gamma matrices in equation ������ together with
the invariance of the trace under a cyclic change of its arguments� For now it su�ces to
use

tr�
a
b � � 	 a�b�
tr�
a
b 
c 
d� � 	�a�b c�d� a�c b�d � a�d b�c��

tr���� � � ���n� � � for n odd�
�	�	��

�Exercise ���
Derive the trace results in equation �	�	���

Using these results� and expressing the answer in terms of the Mandelstam variables
of equation ������� we �nd

�

	

X
spins

jMfij� �
�e	

t�

�
s� � u� � 	�m�

e � m�
���s � u� � 
�m�

e � m�
���
�
� �	�	��

This can now be used in the � � � cross section formula ������ to give� in the high energy
limit �s� juj � m�

e� m
�
���

d	

d)�
�

e	

����s

s� � u�

t�
�	�	��

for the di�erential cross section in the centre of mass frame�

�Exercise ���
Derive the result for the electron�muon scattering cross section in equation �	�	���
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Figure ��	 Lowest order Feynman diagrams for electron�electron scattering�

Other calculations of cross sections or decay rates will follow the same steps we have
used above� You draw the diagrams� write down the amplitude� square it and evaluate
the traces �if you are using spin sum�averages�� There are one or two more wrinkles to
be aware of� which we will meet below�

��� Electron�Electron Scattering

Since the two scattered particles are now identical� you can�t just replace m� by me in
the calculation we did above� If you look at the diagram of Figure 	�� �with the muons
replaced by electrons� you will see that the outgoing legs can be labelled in two ways�
Hence we get the two diagrams of Figure 	���

The two diagrams give the amplitudes�

iM� �
ie�

t
u�pc��

�u�pa�u�pd���u�pb��

iM� � � ie
�

u
u�pd��

�u�pa�u�pc���u�pb��

Notice the additional minus sign in the second amplitude� which comes from the anti

commuting nature of fermion �elds� You should accept as part of the Feynman rules for
qed that when diagrams di�er by an interchange of two fermion lines� a relative minus
sign must be included �you don�t need to get the absolute sign of an amplitude right�
just its sign relative to the other amplitudes�� This is important because

jMfij� � jM� �M�j��
so the interference term will have the wrong sign if you don�t include the extra sign
di�erence between the two diagrams�

Squaring the amplitude and doing the traces yields �in the limit of negligible fermion
masses��

�

	

X
spins

jMfij� � �e	
�
s� � u�

t�
�
s� � t�

u�
�

�s�

tu

�
� �	����

��	 Electron�Positron Annihilation

��
�� e�e� � e�e�

For this process the two diagrams are shown in Figure 	��� with the one on the right
known as the annihilation diagram� They are just what you get from the diagrams for
electron�electron scattering in Figure 	�� if you twist round the fermion lines� The fact
that the diagrams are related this way implies a relation between the amplitudes� The
interchange of incoming particles�antiparticles with outgoing antiparticles�particles is
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Figure ��
 Lowest order Feynman diagrams for electron�positron scattering in qed�

called crossing� For our particular example� the squared amplitude for e�e� � e�e� is
related to that for e�e� � e�e� by performing the interchange s
 u� Hence� squaring
the amplitude and doing the traces yields �again neglecting fermion mass terms�

�

	

X
spins

jMfij� � �e	
�
s� � u�

t�
�
u� � t�

s�
�

�u�

ts

�
� �	����

��
�� e�e� � ���� and e�e� � hadrons

If electrons and positrons collide and produce muon�antimuon or quark
antiquark pairs�
then the annihilation diagram is the only one which contributes� At su�ciently high
energies that the quark masses can be neglected� this immediately gives the lowest order
qed prediction for the ratio of the annihilation cross section into hadrons to that into
�����

R � 	�e�e� � hadrons�

	�e�e� � �����
� �

X
f

Q�
f � �	����

where the sum is over quark �avours f and Qf is the quark�s charge in units of e� The
� comes from the existence of three colours for each �avour of quark� Historically this
was important� you could look for a step in the value of R as your e�e� collider�s cm
energy rose through a threshold for producing a new quark �avour� If you didn�t know
about colour� the height of the step would seem too large� Incidentally� another place
the number of colours enters is in the decay of a �� to two photons� There is a factor of
� in the amplitude from summing over colours� without which the predicted decay rate
would be one ninth of its real size�

At the energies used at lep you have to remember the diagram with a Z replacing
the photon�

�Exercise ���
Show that the cross section for e�e� � ���� is equal to 	���
��s�� neglecting the lepton
masses�

��
 Compton Scattering

The diagrams which need to be evaluated to compute the Compton cross section for
�e � �e are shown in Figure 	�	� For unpolarised initial and�or �nal states� the cross
section calculation involves terms of the form

X
�

���� �p� ����p�� �	����
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Figure ��� Feynman diagrams for Compton scattering�

where � represents the polarisation of the photon of momentum p� Since the photon is
massless� the sum is over the two transverse polarisation states� and must vanish when
contracted with p� or p�� Moreover� since the photon is coupled to the electromagnetic
current J� � 
��
 of equation ������ any term in the polarisation sum �	���� proportional
to p� or p� does not contribute to the cross section� This is because the current is
conserved� ��J

� � �� so in momentum space p�J
� � �� The upshot is that in calculations

you can make the replacement

X
�

���� �p� ����p� � �g�� � �	��	�



� Introduction to Renormalisation

��� Renormalisation of QED

Let�s start by considering how the electric charge is de�ned and measured� This will
bring up the question of what happens when you try to compute loop corrections� In
fact� the expansion in the number of loops is an expansion in Planck�s constant �h� as you
can show if you put back the factors of �h�

The electric charge (e can be de�ned as the coupling between an on
shell electron
and an on
shell photon� that is� as the vertex on the left hand side of Figure ��� with
p�� � p�� � m�� where m is the electron mass� and q� � �� The Lagrangian parameter e
can never be measured in an experiment� since quantum �uctuations are always present�
Experiment tells us that

(e�

	�
� �

���
�

We call (e the renormalised coupling constant of qed� We can calculate (e in terms of e
in perturbation theory� To one loop� the relevant diagrams are shown on the right hand
side of Figure ���� and the result takes the form

(e � e � e�
h
a� ln

M�

m�
� b�

i
� � � � �����

where a� and b� are constants obtained from the calculation� The e� term is divergent�
so we have introduced a cuto� M to regulate it� This is called an ultraviolet divergence
since it arises from the propagation of high momentum modes in the loops� The cuto�
amounts to selecting only those modes where each component of momentum is less than
M in magnitude� Despite the divergence in ������ it still relates the measurable quantity
(e to the coupling e we introduced in our theory� This implies that �
e itself must be
divergent� For a sensible theory� in any relation between physical quantities the ultraviolet
divergences must cancel leaving a relation which is independent of the method used to
regulate divergences� This seems a very sensible demand of our theory� Essentially we
expect that qed breaks down at very high energies �e�g� when gravitational e�ects start
to become important�� i�e� before M ��� However� we hope that what is going on at
such ultra
short �Planck length� distances does not modify physics as we know it today�
e�g� Quantum Gravity does not destroy Coulombs Law! Demanding this of our theory
is equivalent to saying that we want our theory to be renormalisable�

As an example� consider the amplitude for electron�electron scattering� which we
considered at tree level in section 	��� Some of the contributing diagrams are shown in
Figure ���� where the crossed diagrams are understood �we showed the crossed tree level
diagram explicitly in Figure 	���� Ultraviolet divergences are again encountered when
the diagrams are evaluated� and the result is of the form

iMfi � c�e
� � e	

h
c� ln

M�

m�
� d�

i
� � � � �����

where c�� c� and d� are constants� determined by the calculation� In order to evalu

ate Mfi numerically� however� we must express it in terms of the known parameter (e�
Combining ����� and ����� yields�

iMfi � c�(e� � (e	
h
�c� � �a�c�� ln

M�

m�
� d� � �b�c�

i
� � � � �����
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Figure ��� Diagrams for vertex renormalisation in qed up to one loop�

Figure ��	 Some diagrams for electron�electron scattering in qed up to one loop�

where the ellipsis denotes terms of order (e
 and above� Since jMfij� is measurable�
consistency �renormalisability� requires�

c� � �a�c��

This result is indeed borne out by the actual calculations� and the relation between Mfi

and (e contains no divergences�

iMfi � c�(e� � (e	�d� � �b�c�� �O�(e
�� ���	�

To understand how this cancellation of divergences happened we can study the con

vergence properties of loop diagrams �although we shall not evaluate them�� Consider
the third diagram on the right hand side in Figure ��� and the middle diagram in Fig

ure ���� These both contain a loop with one photon propagator� behaving like �
k� at
large momentum k� and two electron propagators� each behaving like �
k� To evaluate
the diagram we have to integrate over all momenta� leading to an integral�

I �
Z
large k

d	k

k	
� �����

which diverges logarithmically� leading to the lnM� terms in ����� and ������ Notice�
however� that the divergent terms in these two diagrams must be the same� since the
divergence is by its nature independent of the �nite external momenta �the factor of two
in equation ����� arises because there is a divergence associated with the coupling of each
electron in the scattering process�� In this way we can understand that at least some of
the divergences are common in both ����� and ������ What about diagrams such as the
third box
like one in Figure ���� Now we have two photon and two electron propagators�
leading to

I �
Z
large k

d	k

k

�



Figure ��
 Primitive divergences of qed�

Figure ��� Diagram containing a primitive divergence�

This time the integral is convergent�
Detailed study like this reveals that� for qed� ultraviolet divergences always cancel

in relations between physically measurable quantities� We discussed above the de�nition
of the physical electric charge (e� A similar argument applies for the electron mass� the
Lagrangian bare mass parameter m is divergent� but we can de�ne a �nite physical mass
(m�

In fact you �nd that all ultraviolet divergences in qed stem from graphs of the type
shown in Figure ��� and are known as the primitive divergences� Any divergent graph
will be found on inspection to contain a divergent subgraph of one of these basic types�
For example� Figure ��	 shows a graph where the divergence comes from the primitive
divergent subgraph inside the dashed box� Furthermore� the primitive divergences are
always of a type that would be generated by a term in the initial Lagrangian with a
divergent coe�cient� Hence by rescaling the �elds� masses and couplings in the original
Lagrangian we can make all physical quantities �nite �and independent of the exact
details of the adjustment such as how we regulate the divergent integrals�� This is what
we mean by renormalisability� Put slightly di�erently� a renormalisable theory is one
which needs as input only the values of those observable �i�e� renormalised� parameters
which have bare �unobservable� counterparts sitting in the original Lagrangian density�
This means that a renormalisable theory has real predictive power�

This should be made clearer by an example� Consider calculating the vertex correc

tion in qed to one loop�

�p p��

� �q

� u�p��
h
A�� � B	��q� � Cq��� � � � �

i
u�p��

The calculation shows that A is divergent� However� we can absorb this by adding a
cancelling divergent coe�cient to the 
 
A
 term in the qed Lagrangian �	�	��� The B
and C terms are �nite and unambiguous� This is just as well� since an in�nite part of B�
for example� would need to be cancelled by an in�nite coe�cient of a term of the form


	��F��
�



which is not available in �	�	���
In fact� the B term gives the qed correction to the magnetic dipole moment� g� of

the electron or muon �see page �
� of the textbook by Itzykson and Zuber ����� These
are predicted to be � at tree level� You can do the one
loop calculation �it was �rst done
by Schwinger between September and November ��	� ���� with a few pages of algebra to
�nd

g � �

�
� �

�

��

�
�

This gives g
� � ������
�� which is already impressive compared to the experimental
values�

�g
��electron � ��������
����������
�g
��muon � ������
��������

Higher order calculations show that the electron and muon magnetic moments di�er at
two loops and above� Kinoshita and collaborators have devoted their careers to these
calculations and are currently at the four loop level� Theory and experiment agree for
the electron up to the ��th decimal place!

The C term gives the splitting between the �s��� and �p��� levels of the hydrogen
atom� known as the Lamb shift� Bethe�s calculation ��� of the Lamb shift� done during a
train ride to Schenectady in June ��	�� was an early triumph for quantum �eld theory�
Here too� the current agreement between theory and experiment is impressive�

In discussing the vertex correction in qed� we said that the divergent part of the
A term could be absorbed by adding a cancelling divergent coe�cient to the 
 
A
 term
in the qed Lagrangian �	�	��� When a theory is renormalisable� all divergences can be
removed in this way� Thus� for qed� if the original Lagrangian is �ignoring the gauge

�xing term��

L � ��

	
F��F

�� � i

�
 � e
 
A
 �m

�

then rede�ne everything by�


 � Z
���
� 
R� A� � Z

���
� A�

R�

e � Ze(e �
Z�

Z�Z
���
�

(e� m � Zm (m�

where the subscript R stands for #renormalised$� In terms of the renormalised �elds

L � ��

	
Z�FR��F

��
R � iZ�
R
�
R � Z�(e
R 
AR
R � ZmZ� (m
R
R�

Writing each Z as Z � � � �Z� re
express the Lagrangian one more time as

L � ��

	
FR��F

��
R � i
R
�
R � (e
R 
AR
R � (m
R
R � ��Z terms��

Now it looks like the old Lagrangian� but written in terms of the renormalised �elds� with
the addition of the �Z counterterms� Now when you calculate� the counterterms give you
new vertices to include in your diagrams� The divergences contained in the counterterms
cancel the in�nities produced by the loop integrations� leaving a �nite answer�

The old A and 
 are called the bare �elds� and e and m are the bare coupling and
mass�



Note that to maintain the original form of L� you want Z� � Z�� so that the 
� and
(e 
A terms combine into a covariant derivative term� This relation does hold� and is a
consequence of the electromagnetic gauge symmetry� it is known as the Ward identity�

Let me stress again that renormalisation is not about sweeping in�nities under the
carpet� It is about saying that we don�t need to understand physics at the Planck scale
in order to interpret lep data�

��� Renormalisation of Quantum Chromodynamics

Qcd is a theory of interactions between spin
��� quarks and spin
� gluons� It is a
non
Abelian gauge theory based on the group SU���� with Lagrangian

L � ��

	
Ga

��G
a �� �

X
f


f�i 
D �mf �
f �
gauge �xing and
ghost terms

� ���
�

Here� a is a colour label� taking values from � to � for SU���� and f runs over the quark
�avours� The covariant derivative and �eld strength tensor are given by

D� � �� � igAa
�T

a�

Ga
�� � ��A

a
� � ��A

a
� � gfabcAb

�A
c
� �

�����

where the fabc are the structure constants of SU��� and the T a are a set of eight in

dependent Hermitian traceless � 	 � matrix generators in the fundamental or de�ning
representation �see the pre school problems and the quantum �eld theory course��

As in qed gauge �xing terms are needed to de�ne the propagator and ensure that
only physical degrees of freedom propagate� The gauge �xing procedure is more compli

cated in the non
Abelian case and necessitates� for certain gauge choices� the appearance
of Faddeev�Popov ghosts to cancel the contributions from unphysical polarisation states
in gluon propagators� However� the ghosts �rst appear in loop diagrams� which we will
not compute in this course�

There are no Higgs bosons in pure qcd� The only relic of them is in the masses for
the fermions which are generated via the Higgs mechanism� but in the electroweak sector
of the standard model�

A fundamental di�erence between qcd and qed is the appearance in the non
Abelian
case of interaction terms �vertices� containing gluons alone� These arise from the nonvan

ishing commutator term in the �eld strength of the non
Abelian theory in equation ������
The photon is electrically neutral� but the gluons carry the colour charge of qcd �specif

ically� they transform in the adjoint representation�� Since the force carriers couple to
the corresponding charge� there are no multi photon vertices in qed but there are multi
gluon couplings in qcd� This di�erence is crucial� it is what underlies the decreasing
strength of the strong coupling with increasing energy scale�

In qcd� hadrons are made from quarks� Colour interactions bind the quarks� produc

ing states with no net colour� three quarks combine to make baryons and quark�antiquark
pairs give mesons� It is generally believed that the binding energy of a quark in a hadron
is in�nite� This property� called con�nement� means that there is no such thing as a free
quark� Because of asymptotic freedom� however� if you hit a quark with a high energy
projectile it might behave in many ways as a free particle� For example� in deep inelastic



Figure ��� Schematic depiction of deep inelastic scattering� An incident lepton radiates a

photon which knocks a quark out of a proton� The struck quark is detected indirectly only

after hadronisation into observable particles�

Figure ��� Additional diagrams for vertex renormalisation in qcd up to one loop� The dashed

line denotes a ghost� For some gauge choices and some regularisation methods not all of these

are required�

scattering� or dis� a photon strikes a quark in a proton� say� imparting a large momentum
to it� Some strong interaction corrections to this part of the process can be calculated
perturbatively� As the quark heads o� out of the proton� however� the low energy strong
interactions cut in again and #hadronise$ the quark into the particles you actually detect�
This is illustrated schematically in Figure ����

We now try to repeat the procedure we used for renormalising the coupling in qed�
but this time in qcd� which is also a renormalisable theory� If we de�ne the renormalised
coupling (g as the strength of the quark�gluon coupling� then in addition to the diagrams
of Figure ���� with the photons replaced by gluons� there are more diagrams at one loop�
shown in Figure ��
� Looking at the second of these new diagrams� it is ultraviolet
divergent �containing a lnM� term� and is also infrared divergent� since there is no mass
to regulate the low momentum modes� In qed all the loop diagrams contain at least
one electron propagator and the electron mass provides an infrared cuto� �you still have
to worry when the electron is on
shell� but this is not our concern here�� In the second
diagram of Figure ��
 there is no quark in the loop� Now we can choose to de�ne the
renormalised coupling o�
shell� i�e� at some non
zero q�� The �nite value of q� provides
the infrared regulator and the diagram has a term proportional to ln�M�
q���

Thus in qcd we can�t de�ne a physical coupling constant from an on
shell vertex�
This is not really a serious restriction since it�s up to us how we de�ne the coupling�
We could equally well have de�ned the qed coupling o�
shell� it�s just that the value
of �
��� is easy to extract from low energy experiments which are close to the on
shell
limit� Now the renormalised coupling depends on how we de�ne it and therefore on at



least one momentum scale �in almost all practical cases� only one momentum scale�� The
renormalised strong coupling is thus written

(g�q���

When physical quantities are expressed in terms of (g�q�� the coe�cients of the pertur

bation series are �nite�

You can de�ne counterterms for qcd in the same way as was demonstrated for
qed� Now the gauge coupling g enters in many terms where it has the potential to get
renormalised in di�erent ways� This would be a disaster� In fact� the gauge symmetry
imposes a set of relations between the renormalisation constants� known as the Slavnov�

Taylor identities� which generalise the Ward identities of qed�
We have just seen that the renormalised coupling in qcd� (g�q��� depends on the

momentum at which it is de�ned� We say it depends on the renormalisation scale� and
commonly refer to (g as the #running coupling constant�$ We would clearly like to know
just how (g depends on q�� so we calculate the diagrams in Figures ��� and ��
� to get the
�rst terms in a perturbation theory expansion�

(g��� � g � g�
h
a� ln

M�

��
� b�

i
� � � � �����

where a� and b� are constants and g is the #bare$ coupling from the Lagrangian ���
��
I have switched to using �� in place of q�� and have written (g as a function of � for
convenience� From this equation it follows that

�
�(g

��
� ��(g� � ��a� (g� � � � � �����

The discovery by Politzer and by Gross and Wilczek� in ����� that a� � � led to the
possibility of using perturbation theory for strong interaction processes� since it implies
that the strong interactions get weaker at high momentum scales� (g��� � � is a stable
solution of the di�erential equation ������ Keeping just the (g� term� we can solve �����
to �nd

�s��� � (g����

	�
�

	�

�� ln���
&��
� ������

where & is a constant of integration and �� � ����a�� Thus �s��� decreases logarith

mically with the scale at which it is renormalised� as shown in Figure ���� If for some
process the natural renormalisation scale is large� there is a chance that perturbation
theory will be applicable� The value of �� is�

�� � ��� �

�
nf � ������

where nf is the number of quark �avours� The crucial discovery was the appearance
of the #��$ coming from the self
interactions of the gluons via the extra diagrams of
Figure ��
� Quarks� and other non
gauge particles� always contribute negatively to ���
Non
Abelian gauge theories are the only ones we know where you can have asymptotic
freedom �providing you don�t have too much #matter$� e�g� providing that the number
of �avours is less than or equal to �
 for qcd��



��

�s��
�	

��

Figure ��� Running of the strong coupling constant with renormalisation scale�

What is the signi�cance of the integration constant &� The original qcd La

grangian ���
� contained only a dimensionless bare coupling g �the quark masses don�t
matter here� since the phenomenon occurs for a pure glue theory�� but now we have a
dimensionful parameter� The real answer is that the radiative corrections �in all �eld
theories except �nite ones� break the scale invariance of the original Lagrangian� In
qed there was an implicit choice of scale in the on
shell de�nition of (e� Lacking such a
canonical choice for qcd� you have to say #measure �s at � � MZ$ or #�nd the scale
where �s � ����$ so that a scale is necessarily involved� The phenomenon was called
dimensional transmutation by Coleman� & is given by

& � � exp

�
�
Z �g��� dg

��g�

�
� ������

and is �
independent� The explicit � dependence is cancelled by the implicit � depen

dence of the coupling�

We�ve seen that the coupling depends on the scale at which it is renormalised�
Moreover� there are many ways of de�ning the renormalised coupling at a given scale�
depending on just how you have regulated the in�nities in your calculations and which
momentum scales you set equal to �� The value of (g��� thus depends on the renormal�

isation scheme you pick� and with it� &� In practice� the most popular scheme today
is called modi�ed minimal subtraction� ms� in which integrals are evaluated in 	 � �
dimensions and divergences show up as poles of the form ��n for positive integer n� In
the particle data book you will �nd values quoted for &MS around ��� MeV �it also de

pends on the number of quark �avours�� Don�t buy a value of & unless you know which
renormalisation scheme was used to de�ne it�

In Figure ��� you see that the coupling blows up at � � &� This is an artifact of
using perturbation theory� We can�t trust our calculations if �s��� � �� In practice� you
can perhaps use scales for � down to about � GeV� but not much lower� and � GeV is
probably safer�

�Exercise ���
Extending the expansion of (g in terms of g in ����� to two loops gives

(g��� � g � g�
h
a� ln

M�

��
� b�

i
� g�

h
a� ln�

M�

��
� b� ln

M�

��
� c�

i
�

with a similar equation for (g���� in terms of g� Renormalisability implies that (g��� can



be expanded in terms of (g�����

(g��� �
	X
n
�

(g�n������Xn�

where the Xn are �nite coe�cients� Show that this implies that a� is determined once
the one loop coe�cient a� is known� In fact a� determines all the terms ��s ln��n� called
the leading logarithms� from a one loop calculation� you can sum up all the leading
logarithms�

For qed there is no positive contribution to the beta function� so the electromagnetic
coupling has a logarithmic increase with renormalisation scale� However the e�ect is small
even going up to lep energies� � goes from �
��� to about �
���� The so called Landau
pole� where � blows up� is safely hidden at an enormous energy scale�

�Exercise ���
Any process sensitive to strong interactions is in principle able to measure �s at any
scale� However� in practise there is some optimal choice� Discuss this statement�
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A Pre School Problems

The main aim of this course will be to teach the techniques required for performing
simple calculations of amplitudes� cross sections and decay rates� particularly in Quan

tum Electrodynamics but also in Quantum Chromodynamics� Some aspects of quantum
mechanics� special relativity and electrodynamics will be assumed during the lectures at
the school� The following problems should be helpful in consolidating your knowledge in
these areas� The solutions can be found in many standard textbooks�

Probability Density and Current Density

Starting from the Schr�odinger equation for the wave function 
�x� t�� show that the
probability density � � 
�
 satis�es the continuity equation

��

�t
�r � J � �

where

J �
�h

�im

h

��r
�� �r
��


i
What is the interpretation of J�

Rotations and the Pauli Matrices

Show that a �
dimensional rotation can be represented by a � 	 � orthogonal matrix R
with determinant �� �Start with x� � R x� and impose x��x� � x�x�� Such rotations form
the special orthogonal group� SO����

For an in�nitesimal rotation� write R � �l � iA where �l is the identity matrix and
A is a matrix with in�nitesimal entries� Show that A is antisymmetric �the i is there to
make A hermitian��

Parameterise A as

A �

	
B
 � �ia� ia�

ia� � �ia�
�ia� ia� �

�
CA � �X

i
�

aiLi

where the ai are in�nitesimal and verify that the Li satisfy the angular momentum
commutation relations

�Li� Lj� � i�ijkLk

Note that the Einstein summation convention is used here� In general� I will switch
around between di�erent notational conventions without warning� You should be able to
tell from the context what is meant� notation should be your slave� not your master�

The Pauli matrices 	i are�

	� �
�

� �
� �

�
� 	� �

�
� �i
i �

�
� 	� �

�
� �
� ��

�
�

Verify that �
�
	i satisfy the same algebra as Li� If the two
component spinor


 �
�

�


�

�

transforms into ��l� ia��
��
 under an in�nitesimal rotation� check that 
y
 is invariant
under rotations�



Raising and Lowering Operators

From the angular momentum commutation relations�

�Li� Lj� � i�ijkLk

show that the operators
L
 � L� � iL�

satisfy
�L�� L�� � �L�

�L
� L�� � �L

and show that

�L�� L�� � �

where L� � L�
��L�

��L�
�� From the last commutator it follows that there are simultaneous

eigenstates of L� and L�� Let 
lm be such an eigenvector of L� and L� with eigenvalues
l�l � �� and m respectively� Show that each of L

lm either vanishes or is an eigenstate
of L� with eigenvalue l�l � �� and of L� with eigenvalue m� ��

Four Vectors

A Lorentz transformation on the coordinates x� � �ct�x� can be represented by a 		 	
matrix & as follows�

x�� � &�
�x

�

For a boost along the x
axis to velocity v� show that

& �

	
BBB


� ��� � �
��� � � �

� � � �
� � � �

�
CCCA �A���

where � � v
c and � � ��� ������� as usual�
By imposing the condition

g��x
��x�� � g��x

�x� �A���

where

g�� �

	
BBB


� � � �
� �� � �
� � �� �
� � � ��

�
CCCA

show that
g��&�


&
�
� � g
� or &Tg& � g

This is the analogue of the orthogonality relation for rotations� Check that it works for
the & given by equation �A��� above�

Now introduce
x� � g��x

�



and show� by reconsidering equation �A��� using x�x�� or otherwise� that

x�� � x��&�����

Vectors A� and B� that transform like x� and x� are sometimes called contravariant

and covariant respectively� A simpler pair of names is vector and covector� A particularly
important covector is obtained by letting �
�x� act on a scalar ��

��

�x�
� ���

Show that �� does transform like x� and not x��

Electromagnetism

The four Maxwell equations are�

r �E �
�

��

r	E � ��B
�t

r �B � �

r	B � ��J � ����
�E

�t

Which physical laws are represented by each of these equations� Show that

��

�t
�r � J � �

and explain the signi�cance of this equation� Verify that it can be written in manifestly
covariant form

��J
� � �

where J� � �c��J��
Introduce scalar and vector potentials � and A by de�ning B � r 	 A and E �

�r���A
�t� and recall the gauge invariance of electrodynamics which says that E and
B are unchanged when

A� A�r& and �� �� �&

�t

for any scalar function &� Using this gauge freedom we can set

r �A � � �

c�
��

�t

Assuming that � and A can be combined into a four vector A� � ��
c�A�� this can be
written as ��A

� � �� which is known as the Lorentz gauge condition� De�ning � � ���
��

show that with this condition Maxwell�s equations are equivalent to

�A� � ��J
�

The tensor F�� is de�ned by

F�� � ��A� � ��A�



How many independent components does F�� have� Rewrite F�� in terms of E and B�
Show that�

F��F
�� � ��

�
E�

c�
�B�

�

���
�F��F
� � ��

c
E�B

where

���
� �

��
�

�� if ���	 is an even permutation of ����
�� if ���	 is an odd permutation of ����
� otherwise

This gives the relativistic invariants which can be constructed from E and B�

Group Theory� in Particular SU�N�

Unitary matrices U satisfy U yU � �l� Verify that they form a group by showing that
W � UV is unitary if U and V are� In general� you should also show that there is an
identity element and that every U has an inverse� but these are both obvious� U�N� is
the group of complex unitary N 	 N matrices and SU�N� is the subgroup of matrices
with determinant ���

Let U be a U�N� matrix close to the identity� Write

U � �l � iG

where G has in�nitesimal entries� Show that G is hermitian� If� in addition� U has
determinant �� so U � SU�N�� show that G is traceless�

Any N 	 N traceless hermitian matrix can be written as a linear combination of a
chosen basis set� So� for any G we can choose in�nitesimal numbers �i such that

G �
N���X
i
�

�iTi

where the Ti are our basis� Explain why the summation runs from � to N� � ��
Show that �Ti� Tj� is antihermitian and traceless� and hence can be written

�Ti� Tj� � ifijkTk �A���

for some constants fijk� The commutation relations between the di�erent Ti de�ne the Lie
algebra of SU�N�� The Ti are called the generators and the fijk are called the structure

constants�
Find a set of � independent �	 � matrices which are generators for SU��� and a set

of � independent �	 � generators for SU����
Verify the Jacobi identity�h

Ti� �Tj� Tk�
i

�
h
Tj� �Tk� Ti�

i
�
h
Tk� �Ti� Tj�

i
� �

and hence show that
fjklfilm � fkilfjlm � fijlfklm � �

De�ne a new set of �N� � ��	 �N� � �� matrices

�T i
adj�jk � �ifijk



and show that they obey the same commutation relations as the Ti in equation �A���� The
T i
adj de�ne the adjoint representation� The W �s of the weak interactions and the gluons

of the strong interactions belong to the adjoint representations of SU���L� left
handed
weak SU���� and SU���� the strong interaction colour algebra� respectively�

The generators� and hence the algebra� were found by looking at group elements
near the identity� Other group elements can be recovered by combining lots of these
in�nitesimal #rotations$

U � lim
N�	

��l � i�iTi
N�N � ei�iTi

where the �i are �nite� This construction generates what mathematicians call a simply
connected group� There is a theorem stating that every Lie algebra comes from exactly
one simply connected group� SU�N� and its algebra give us one example�

However� we have seen that both SU��� and the rotation group SO��� have the
same� angular momentum� algebra� What is going on� It must be that SO��� is not
simply connected� In fact� there is a mapping� called a covering� from SU��� to SO���
which preserves the group property� that is if U � SU��� is mapped to f�U� � SO����
then f�UV � � f�U�f�V �� In the SU��� � SO��� case� two elements of SU��� are
mapped on to every element of SO���� Whenever a group G has the same Lie algebra as
a simply connected group S there must be such a covering S � G�

The double covering of SO��� by SU��� underlies the behaviour of spin
�
� and
other half
odd
integer spin particles under rotations� they really transform under SU����
and rotating them by �� only gets you half way around SU���� so you pick up a minus
sign� A second �� rotation gets you back to where you started�


